CYTOTOXIC EFFECT OF SNO₂ NANOPARTICLES ON ALTERNATIVE CELLULAR MODEL: PARAMECIUM TETRAURELIA

Tayeb Bouarroudj¹, Mohamed Rida Benloucif¹, Djamel Eddine Mekki², Meriem Djekoun³, Maroua Benamara¹, Houria Berrebbeh³

¹Laboratory of Chemistry of Inorganic Materials, Department of Chemistry, Badji Mokhtar University, Annaba, Algeria
²Laboratory of Study of Surfaces and Interfaces of the Solid Matter, Department of Physic, Badji Mokhtar University, Annaba, Algeria
³Laboratory of Cellular Toxicology, Department of Biology, Badji Mokhtar University, Annaba, Algeria

ABSTRACT: The development of nanotechnologies and their uses, leads to an increase of nanoparticles concentrations in the air, water and soil. For better understanding the potential impacts of metal oxide nanoparticles in the ecosystem, the present study investigates the cytotoxic effect of SnO₂ nanoparticles for different grain sizes on the alternative model of freshwater, water pollution bioindicator, Paramecium tetraurelia. The size of SnO₂ nanometric powder (Sigma-Aldrich 99.99% pure) has been reduced using mechanical milling with different times. Obtained nanomaterials were then characterized by X-ray diffraction (XRD) and spectroscopy infrared Fourier transforms (FTIR). Moreover, the toxicity of SnO₂ nanoparticles on paramecium was studied by following the evolution of the growth kinetics and percent response as a function of time; whereas the impact of SnO₂ nanoparticles on paramecium was determined on two biomarkers of oxidative stress respectively, Catalase (CAT) and glutathione S-transferase (GST). The preliminary results show a non-negligible effect of SnO₂ (NPs) via their grain sizes. Indeed, it was recorded an increase in the number of paramecium at low concentrations of SnO₂ and its inhibition at high concentrations.

KEYWORDS: Nanoparticles, SnO₂, grain size, Paramecium tetraurelia, cytotoxicity.

INTRODUCTION:

Nanotechnology uses materials of which a single unit is sized between 1 and 100 nm (Mallakpour et al., 2015). Due to its interesting chemical and physical properties, nanomaterials have attracted the attention of researchers around the globe. Nowadays, different products utilize various types of nanomaterials with variety of structures and properties including cosmetics (Matranga et al., 2012), fungicides in agriculture, food industry (Martineau et al., 2014) and electronic devices (Zhang et al., 2011) etc. Transition metal oxides nanoparticles play a crucial role in photocatalysis applications (He et al., 2013) and because of their nano-scale size, high aspect ratio (i.e. surface to volume ratio of atoms) and edge effect (Jan et al., 2014) they exhibit desired properties which found to be applicable in many fields such as lithium-ion batteries (Subramanayam et al., 2014), industry and medicine (Gambardella et al., 2014), photodetectors and solar cells (Jan et al., 2014).

Among these transition metal oxides, Tin Dioxide (SnO₂) is an important n-type semiconductor material (Meena Kumari et al., 2015) with a wide band-gap (Eg =3.6 eV) (Suvertha Rani, et al., 2013). A wide band gap of SnO₂ has attracted considerable attention wherever doped with transition metals owing to their remarkable electronic optical and magnetic properties resulting from large Sp-d exchange interaction between the magnetic ions and the band electron (Kaur et al., 2012). It is extensively used in variety of applications such as: Catalysis (Karanakaran et al., 2013), biomedical and biological sensing (Liu et al., 2014), lithium batteries (Vidhu et al., 2015), solar cells (Henry et al., 2015), gas sensors, transparent conducting electrode (Vidhu et al., 2015), and optical material (Fakhri et al., 2015).

Many methods have been developed to synthesize SnO₂ nanostructure such as hydrothermal methods, sol-gel methods (Bhattacharjee et al., 2015), microwave heating (Bhattacharjee et al., 2015), chemical vapor deposition, co-precipitation, mechanical synthesis, laser pyrolysis and thermal evaporation (Bhattacharjee et al., 2015).

Despite the significant contribution of nanoparticles in solving many of our daily life problems through their technological applications, the use of nanoparticles nowadays in many commercial products without clear studies on their effects on human and environment health raised many concerns. Thus, the utility of nanomaterials and nanoparticles is highly dependent on their toxicity. Alternative models are used in toxicology to understand the mechanisms of toxic actions at different levels of the organization of the biological cell.

Among these models, the Paramecium tetraurelia is a suitable one to investigate the cytotoxicity of SnO₂ NPs because it is already been used to study the effect of chemicals on aquatic community (Amamra et al., 2015; Djekoun et al., 2015).

The objective of our work is to study the toxicity effects of SnO₂ nanoparticles in the ecosystem. For this purpose, the toxicity of SnO₂ NPs was investigated by different grain size using the alternative model Paramecium tetraurelia to define their mechanisms of action and subsequently explain their toxicity.

MATERIALS AND METHODS:

Samples Preparation (ball milling)

Two grams of commercial SnO₂ powder (Sigma–Aldrich, 99.9% purity) were used as starting materials and milled during different times (0, 1and 3h) at room temperature under argon atmosphere, by using a
planetary ball milling machine. Milling was performed using stainless steel balls with a diameter of 12.7 mm, and was loaded with 12.5 g. The relationship of ball-to-powder percent was equal to 97:3 and the rotation speed as maintained at 200 rpm.

Characterization Techniques
Ball-milled powders were characterized by X-ray powder diffraction (XRD) using X’Pert PRO PANalytical system with Cu radiation at wavelength $\lambda = 1.5405980$ Å at 2θ values between 20° and 90°. The SnO$_2$ samples were analyzed by infrared spectrometry (FTIR), Shimadzu Fourier Transform Infrared Spectrophotometer (FTIR-8400S). Two milligrams of the sample was mixed with 200 mg KBr (FTIR grade) and pressed into a pellet. The sample pellet was placed into the sample holder and FTIR spectra were recorded in the range 4000-400 cm$^{-1}$ in FTIR spectroscopy at a resolution of 4 cm$^{-1}$.

Cell Culture
The biological material used in our study is a ciliated protist: Paramecium tetraurelia (Azzouz et al., 2011), kindly provided by Laboratory of Cellular Toxicology at the University of Annaba (Algeria).

Measurement of Growth Kinetics
The experiments were performed according to (Azzouz et al., 2011). The SnO$_2$ NPs were dispersed in water ultrapure during 10 min by using a sonicator. In test tubes, the concentrations of SnO$_2$ (50, 100 and 200 mg/l) were prepared in 10 ml of culture medium. For each tube we added 10 µl of paramecium, the culture was done at 28 ± 2°C. The total number of cells of paramecium was measured by the daily cell counting (0, 24, 48, 72 and 96 h), after fixation with formalin at 4%, under photonic microscope with enlargement 10 using grooved blade. The count was repeated at least three times for each sample.

Determination of Percentage of Response
Percentage of response is a reliable parameter to evaluate the xenobiotic effect via the inhibition of the cell growth of protists. Positive values of response percentage indicate an inhibition of growth, while negative values indicate a stimulation of growth (Bradford, 1976).

Percentage of response is calculated by the following formula:

$$\text{Response(\%)} = \frac{(CN - EN)}{CN} \times 100$$

Where CN: is the number of control cells (cell ml$^{-1}$) and EN is the number of treated cells (cell ml$^{-1}$).

Determination of Glutathione S-Transferase Activity (GST)
The measurement of Glutathione Stransferase (GST) is determined by the method of (Habig et al., 1974). It is based on the reaction of conjugation between the GST and a substrate, the CDNB (1-chloro 2, 4 dinitrobenzene) and in the presence of a cofactor the glutathione (GSH). The absorbance was measured spectrophotometrically at 340 nm.

Determination of Catalase Activity (CAT)
The measurement of Catalase activity (CAT) is determined using the method of (Regoli et al., 1995). Whose principle is based on the change in consecutive optical density dismutation of hydrogen peroxide (H$_2$O$_2$). The (CAT) activity was determined spectrophotometrically at 240 nm.

RESULTS AND DISCUSSION: Structural Properties by XRD
The XRD pattern of the product is shown in figure 1.

Fig 1. The XRD patterns of the SnO$_2$ nanoparticles prepared by ball milling

The peaks pointed out at 20 values of can be associated with (110), (101), (200), (111), (210), (211), (220), (902), (310), (112), (301), (202), (321), (400) and (222), respectively, correspond to tetragonal SnO$_2$ rutile structure crystallite (space group, P42/mmm), which are in good agreement with the literature values (JCPDS card no. 41–1445). The average size of the SnO$_2$ particles can be estimated by the Scherrer equation (Ganesh et al, 2012),

$$D = \frac{k\lambda}{\beta \cos \theta},$$

where D is the crystallite size, K, is the Scherrer constant, λ is the X-ray wavelength, β is the full width at half maximum of the diffraction peak, and θ is the Bragg diffraction angle of
the diffraction peaks. The average size for the SnO$_2$ nanoparticles that were prepared by ball milling is shown in Table 1.

<table>
<thead>
<tr>
<th>Milling time (h)</th>
<th>0</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average grain size (nm)</td>
<td>36</td>
<td>28</td>
<td>19</td>
</tr>
</tbody>
</table>

FTIR Analysis

The FTIR spectrum of SnO$_2$ nanoparticles is shown in Fig. 2.

![Fig 2. FTIR spectra of SnO$_2$ nanoparticles prepared by ball milling](image)

From this spectrum, the peaks around 1628 and 3421 cm$^{-1}$ correspond to the binding vibrations of absorbed molecular water and the stretching vibration of –OH groups (Bagal et al., 2012). A band which appeared in the range of 400 and 700 cm$^{-1}$, specifically, at 633.22 cm$^{-1}$ is assigned to anti-symmetric Sn-O-Sn and anti-symmetric Sn-O stretching mode of the surface bridging oxide formed by condensation of adjacent surface hydroxyl group’s vibration (Deosarkar et al., 2013). The absorption peak within 3300–3475 cm$^{-1}$ (3442.50 cm$^{-1}$) is assigned to O–H stretching vibration of absorbed H$_2$O at the surface of the tin oxide (Mazloom et al., 2013).

Kinetics Growth

Figure 3 (a-b-c) shows changes in the number of *Paramecium tetraurelia* in function of time, treated with increasing concentrations of SnO$_2$ (50, 100, 200 mg / l) with different grain sizes (36, 28, 19 nm) for each concentration.

![Fig 3(a- b- c). Effects of increasing concentrations of SnO$_2$ nanoparticles on the growth of Paramecium tetraurelia with different grain sizes (a 36 nm, b 28 nm, c 19 nm)](image)

Response Percentage

Figure 4 (a-b-c) shows the percentage response *Paramecium tetraurelia* treated with increasing concentrations of SnO$_2$ (50, 100, 200 mg / l) with different grain sizes (36, 28, 19 nm), for each concentration. The results obtained concerning the response percentage confirm those of kinetics growth.
Glutathione S-transferase (GST) Activity

Figure 5 (a-b-c) shows the changes in GST activity in *Paramecium tetraurelia* treated with increasing concentrations of SnO$_2$ (50, 100, 200 mg/l) with different grain sizes (36, 28, 19 nm) for each concentration.

Catalase Activity

Fig. 6 (a-b-c) shows the changes in Catalase activity in *Paramecium tetraurelia* treated with increasing concentrations of SnO$_2$ nanoparticles (50, 100, 200 mg/l) with different grain sizes (36, 28, 19 nm) for each concentration.

Fig 4 (a-b-c). Effects of increasing concentrations of SnO$_2$ nanoparticles on the response percentage with different grain sizes (a 36 nm, b 28 nm, c 19 nm)

Fig 5(a-b-c). Variations of GST content in *Paramecium tetraurelia* exposed to increasing concentrations of SnO$_2$ nanoparticles with different grain sizes (a 36 nm, b 28 nm, c 19 nm)

Fig 6(a-b-c). Variations of CAT activity in *Paramecium tetraurelia* exposed to increasing concentrations of SnO$_2$ nanoparticles with different grain sizes (a 36 nm, b 28 nm, c 19 nm)
Toxicity Discussion

Environmental pollution bioindicators are sensitive to physicochemical changes in their environment, such as hydrocarbons (Ismert et al., 2002), trace metals (Gomot, 1997), or pesticides (Coeurdassier et al., 2002; Vidal, 2001; Rouabhi, 2005), subjected to exogenous stress, micro-organisms have the ability to develop a battery capable of responses that trigger detoxification process, against xenobiotics to fight, and / or acclimatize against the chemical stress (Lagadic et al., 1997; Perez-Raman et al., 2001). Thus, protists are eukaryotic cells, ubiquitous in the aquatic and terrestrial environment, characterized by a short life cycle, rapid multiplication (Beal et al., 1993) and any changes to their environment could affect their behavior, which justified the use of *Paramecium tetraurelia* as an alternative cell model for toxicology and risk assessment for health (Sauvant et al., 1999). In this paper, we studied the toxicity of NPs SnO₂ of which toxic potential has been the main subject of our research. For that we were interested to investigate the effect of these NPs SnO₂ with different grain sizes (36, 28, 19 nm) on the growth kinetics of *Paramecium*, a parameter that actually reflects the toxicity of a xenobiotic (Perez-Rama et al., 2001; Sauvant et al., 1999). The obtained results show that the exposure to low concentrations of NPs SnO₂ induces the stimulation growth of *Paramecium* for two concentrations (50 and 100 mg / l) and this is true for all grain sized (36, 28, 19 nm). We have also found that this stimulation was greater for the concentration 50 mg / l as that induced by a concentration of 100 mg / l for both particle sizes 36 and 28nm.

In contrary, high concentration of (200 mg / l) has obvious inhibition for two sizes of NPs grains (36, 28nm). On the grain size of 19 nm we have demonstrated a stimulation of *Paramecium* growth for both concentrations (50 and 100 mg / l); this stimulation is higher for the concentration 100 mg / l when induced by a concentration of 50 mg/l. As for the high concentration (200 mg / l), there was a very low inhibition.

The stimulation of cell growth for the two lower concentrations may be explained by the phenomenon of "hormesis", which can be defined: A dose-response relationship that is characterized by low-dose stimulation and a high-dose inhibition (Eaton et al., 2001).

The work of (Shin et al., 2007), on the cytotoxicity of Ag NPs on peripheral blood mononuclear cells (peripheral blood mononuclear cells) has showed that low concentration of cell proliferation is stimulated and high concentration is inhibited (Shin et al., 2007), where (Jiao et al., 2014), who observed that low concentrations of Ag NPs provoke a stimulation of cell proliferation of HepG2 cells.

The percentage of response is a parameter by which we can confirm the growth evolution curves of *Paramecium* treated by different concentrations of NPs SnO₂ used.

The antioxidant defense system is present in all aerobic cells; it neutralizes the intermediate chemical reactions produced endogenously and / or metabolism of xenobiotics. The activity of the antioxidant system may be induced or inhibited under the effect of a chemical stress (Winston et al., 1991). Among the enzymes involved in the detoxification systems, our interest has focused on the development of Catalase activity, which is a catalyst for the reduction of hydrogen peroxide to water and molecular oxygen. This enzyme plays a role in preventing peroxidation of biological molecules and it is sensitive to certain contaminants inductor of oxidative stress at the cell membrane as the organic contaminants, but also metals and metal NPs (Buffet, 2012). Thus, our results show that for all the concentrations of NPs SnO₂, Catalase activity tends to increase and this true for all the tested grain size (19, 28, 36 nm). This bio-scoring has been very sensitive overlooked NPs. As suggested by (Buffet et al., 2011), who observed an induction of CAT activity in “Scrobicularia plana” bivalves and Annelid H diversicolore exposed to NPs CuO. On the other side (Pan et al., 2012) have demonstrated induction of CAT activity in *Scrobicularia plana* treated by Au NPs, or "Mytilus galloprovincials" exposed to NPs SiO₂ and TiO₂ (Canesi et al., 2010), however for the highest concentration of NPs (100 and 200 mg / l), we found induction of CAT activity to be less important compared to treatment for concentration of 50 mg / l. (Gomes et al., 2011) explains this phenomenon by the ROS generated by NPs CuO, which induces an increase in CAT activity until reaching the limit of its antioxidant capacity then leading to its inactivation (Gomes et al., 2011). The other enzyme closely involved in the detoxification phenomenon is the Glutathione S-transferase. The GSTs are a large family of isoenzymes, part of the class II detoxification enzymes (Lukkari et al., 2004; Kim et al., 2009). They catalyze the conjugation of GSH with electrophilic cytotoxic compounds. The previous compounds and GSH conjugates are often less toxic, more water-soluble and can then be more easily expelled from the cell (Salinas et al., 1999). GST plays a major role in the detoxification mechanism of species reactive oxygen species (ROS) and the regulation of redox equilibrium (Konings et al., 1985; Sirrani R. et al., 2007).

In this work, we have demonstrated the induction of GST activity for the three concentrations and for all grain sizes compared to the control. Our results confirm those of (Buffet et al., 2011), that showed induction of GST activity in *Scrobicularia plana* diversicolores and H exposed to CuO NPs and those of (Pan et al., 2012). *S. plana* exposed to NPs Au. This biomarker was also stimulated in *Mytilus galloprovincialis* exposed to SiO₂ NPs (Canesi et al., 2010) and in *Daphnia magna* exposed to NPs TiO₂ (Kim et al., 2009). We also found a lower GST activity for the concentration 200 mg / l for the grain size 36 nm while for the grain size of 28 nm depletion occurred in concentrations 100 and 200 mg / l, this can be explained by the fact that the GST has reached the limit of its antioxidant capacity then leading to inactivation as it was the case for Catalase activity. For the grain size of 19 nm we found an induction of GST activity for NPs treated with SnO₂.
CONCLUSION:

From the interpretation of obtained results in the present study, we can conclude that the low concentrations of SnO₂ nanoparticles (low cytotoxic concentration) had a beneficial effect on the growth of paramecium (activation of cell proliferation), as suggested by (Jiao et al., 2014) where two representative AGNPS with different particle sizes did not induced p38 MAPK pathway cytotoxic doses led to activation and promotion of the proliferation of HepG2 cell (Jiao et al., 2014), unlike the strong concentration where has been a decrease in cells growth. This can be explained by the phenomenon of hormesis, who is a process in which exposure to a low dose of a chemical agent or environmental factor that is damaging at higher doses induces year adaptive beneficial effect on the cell or organism (Calabrese, 2007; Mattson, 2008). Although the phenomenon of hormesis is considered a beneficial adaptive response, our results showed that despite the observed cell proliferation, this cannot prevent the paramecium of antioxidant system when activated and that at even low concentrations. For this and especially because of the complexity of potential interaction between NPs in general and NPs SnO₂ in our work and in living organism particulary, the potential long-term effect of its NPs at low doses on humans should be evaluated to establish standards for a safe and efficient use.

ACKNOWLEDGEMENTS:

The authors would like to thank the Department of Chemistry of Badji Mokhtar University, Annaba, Algeria for assistance to carry out the present research work.

REFERENCES:

Coeurdassier, M. Gomot-de Vaufleury, A. Lovy, C.Badot, P.M. Is the cadmium uptake from soil important in bioaccumulation and toxic effects for snails, Ecotoxicology and Environmental Safety 53; 425-431, 2002.

Fakhri Ali, Sajjad Behrouz, Melika Pourmand. Synthesis, photocatalytic and antimicrobial properties of SnO₂, SnS₂ and SnO₂/SnS₂.
Gambardella Chiara , Tina Mesarič , Tamara Milivojević ,Kristina Sepčić , Lorenzo Gallus ,
Serena Carbone, Sara Ferrando , Marco Faimali . Effects of selected metal oxide nanoparticles on
Artemia salina larvae: evaluation of mortality and behavioural and biochemical responses:
Ganesh E Patil, Dnyaneshwar D Kajale, Vishwas B Gaikwad1 and Gotan H Jain. Preparation and
Gomot, A. Effects of heavy metals on the development of snails. Using the snail as bio-indicators of
75, 1997.
Gomes, T., J. P. Pinheiro, I. Cancio, C. G. Pereira, C. Cardoso and M. J. Bebianno Effects of Copper
Nano particles Exposure in the Mussel Mytilus galloprovincialis. Environmental Science &
He Zuoli, Jiaqi Zhou. Synthesis, Characterization, and Activity of Tin Oxide Nanoparticles: Influence of Solvothermal Time on Photocatalytic
Hui Liu, Tingting Liu, Xiaonian Dong, Yuwu Lv, Zhenfeng Zhu. A novel fabrication of SnO2 and
Biological Chemistry, 249(22), 7130-7139, 1974.
Ismert, M. Oster, T. Bagrel, D. Effects of atmospheric exposure to naphthalene on xenobiotic-
Jan Tariq , Javed Iqbal , Muhammad Ismail , Noor Badshah Qaisar Mansoor , Asqa Arshad , Qazi M. Synthesis, physical properties and antibacterial activity of metal oxides
Kaur Jasneet, Jyoti Shah, R.K. Kotnala , Kuldeep Chand Verma. Raman spectra,
Karunakaran, C. S. Sakthi Raadha, P. Gomathisankar. Microstructures and optical, and photocatalytic properties of sonoechemically and
hydrothermally synthesized SnO2 nanoparticles: Journal of Alloys and Compounds 549; 269–
275, 2013.
Konings, A.W., Penninga, P.On the importance of the level of glutathione and theactivity of the pentose phosphate pathway in heat sensitivity
Mallakpour Shadpour, Madani Maryam. A review of current coupling agents for modification of metal oxide nanoparticles: Progress in Organic
Matranga Valeria, Ilaria Corsi. Toxic effects of engineered nanoparticles in the marine environment: Model organisms and molecular
jones and C. Mouneyrac. Size dependent bioaccumulation and ecotoxicity of gold
Perez-Rama, M., Ablade, A.J., Herrero, L.C. and Torres, E.Class III metallothioneins in reponse to cadmium toxicity in the marine microalga
Tetraselmis suecica (KYLIN) BUTCH.

Rouabhi, R. The impact of two pesticides and Diflubenzuron flucyloxuron three alternative cellular models: sp Paramecium, Tetrahymena pyriformis, Tetraselmis suecica and embryonic development of the domestic chicken (Gallus domesticus), PhD University of Annaba, Algeria, 2005

Regoli, F., Principato, G. Glutathione, glutathione dependant and antioxidant enzymes in mussel Mytilus galloprovincialis exposed to metal under field and laboratory conditions: implication for the biomarker. Aquatic Toxicology, 31(1):143-164, 1995.

Vidal, M.L. Study of biochemical markers of pollution in the bivalve freshwater mollusc Corbicula fluminea (Muller) - Purification and characterisation of Glutathione S-Transferases. These doctorate from the University of Bordeaux. 267; 15,17, 2001.

