

ECOTOXICOLOGICAL INVESTIGATION AND ANALYSIS OF VEGETATION OF HEAVY METAL CONTAMINATED AREA AT KUNSZENTMÁRTON

István CSATÁRI*, Péter KERESZTÚRI, Albert TÓTH, Anita CZUDAR, Gyula LAKATOS University of Debrecen, Department of Applied Ecology, Debrecen, Hungary

ABSTRACT. The aim of our study was the examination of vegetation and soil samples of heavy metal contaminated sediment in a post-settled industrial sewage pond-system in Hungary. Due to the disturbance the heavy metal polluted areas have diverse vegetation, and these plants can tolerate higher concentration of heavy metals and they are able to take up them. The accumulated heavy metals could enter the food-chain easily by the process of biomagnification, but these accumulator plants can be applied for phytoremediation. Our paper presents the results of vegetation analysis and heavy metal content of sediment during the period 2003-2005 and the results of ecotoxicological study in 2008. The *Sinapis alba* seed germination and root elongation test which is a simple, economic, quick and efficient test was used to determine the toxic effect of sediment samples. The samples were collected from the units of former secondary Cr contaminated sedimentation pond system of a Hungarian leather factory near the town of Kunszentmárton. The data were compared with on each other in the different periods. The Cr concentration in the sediment samples was between 21-15,000 mg kg⁻¹. Based on our studies, it can be stated, that this area has diverse vegetation, high heavy metal content and low toxicity. The heavy metal uptakes by plants depend on the factors of the environment.

Keywords: chromium, heavy metal accumulation, phytoremediation

INTRODUCTION

Nowadays, as a consequence of human activity, the groundwater and soil pollution by heavy metals increasing continuously and it causes huge problems from the point of view of agriculture and human health. Although contamination of the environment with chromium (Cr) is not widespread problem, industrial wastes (electroplating sludge, Cr pigment and tannery wastes, leather manufacturing wastes, by-products of Cr mining and smelting), municipal sewage sludge, fertilizers etc. may contribute to the increase of Cr content in surface soils (Simon et al., 2000, Kabata-Pendias et al., 1992). The most investigated sources are electroplating works, tanneries, pigments, where chromate anion concentration begins with 5-50 mgkg and may be attends 200-1000 mgkg⁻¹ (Gavris, 2009). The world mean chromium concentration of uncontaminated surface soils is 54 mgkg⁻¹. In contaminated sites several hundred or several thousand mgkg⁻¹ Cr was found in surface soils, and in a proximity of Cr smelter heaps this value may exceed 10000 mg kg⁻¹(Kabata-Pendias and Pendias, 1992, Simon et al., 2000, Lakatos et al., 2008, Csatári et al 2009). At alkaline pH the heavy metal ions can easily adsorb to the small fragment of soil, but the plants can decrease the pH of rhisosphere trough the production of organic acids. The plants of the heavy metal polluted areas can mobilize and uptake the heavy metals in great amounts, and these metals can reach the human organs through the biomagnification process. On the other hand these plants can be applied for phytoremediation of metal polluted sites (Brooks 1998, Keresztúri,

2008). Numerous physical, physico-chemical and chemical methods are used to remove pollutants from the soil, but most of them destroy the physical structure of the soils and changes its chemical composition. Phytoremediation is a novel, environmental sound biotechnology to clean-up contaminated soils or waters with the help of naturally occurring or genetically engineered plants. Phytoremediation is applicable for large surface areas, but the process could be feasible for remediation of agricultural soils which are only moderately polluted (Brooks 1998; Simon 1999). Aquatic macrophytes are widely distributed in various wet environments, from fresh to salt water. They have several characteristic favorable for metal accumulation. However plants have developed a very potential mechanism to combat with such adverse environmental heavy metal toxicity problems, therefore the vegetation of heavy metal polluted sites may be quite diverse (Bricker et al., 2001; Bíró et al., 2007). In terms of biomass, aquatic macrophytes are the predominant organisms on the highly productive, littoral ecosystem, such as wetlands. Rooted species can absorb metals through their roots and rhizomes as well as through their leaves because the latter provide and expanded area to trap particulate matter, sorb metal ions, and accumulate and sequester pollutants (Levine et al., 1990). Macrophytes of heavy metal contaminated soils and wetlands are also stationary and constantly exposed to contaminants such as metals. In comparison with other plant species, wetland macrophytes have been reported to have a larger or comparable capacity for metal accumulation (Csatari et al., 2009). The

Csatári I., Keresztúri P., Tóth A., Czudar A., Lakatos Gy.

heavy metal accumulation of plants depends on the environmental factors, and these can be divided into biological (e.g., species, age, generation) and nonbiological (e.g., temperature, season, salinity, pH, metal concentration) groups. Plants have generally little capacity to uptake chromium and to transfer it to aerial parts. In normal conditions, Cr concentration in plants is less than μgg^{-1} . In plants, which are grown on soils and are treated with tannery waste, concentration may increase significantly (Barcelo and Poschenrieder, 1997). The aim of our work was to examine the vegetation and soil samples of heavy metal contaminated sediment in a post-settled industrial sewage pond-system in Hungary. We examined the toxic effect of the sediment with a Sinapis alba seed germination and root elongation test, too. The heavy metal uptake by plants was measured in wetland and in dry period, too.

MATERIALS AND METHODS Site location

The sampling area was a former secondary sewage water sedimentation pond system of a Hungarian leather factory near the town of Kunszentmárton (Fig.1). The site of our investigation consists of three straight-line-connected sludge-settling pounds (KM.1., KM.2., KM.3.) The area of the investigated ponds is 1000 m². The geographic coordination of the examined site: North Latitude 46°50′, and East Longitude 20°15′. The area lies on the flood of the River Körös, and belong to the Körös-Maros National Park. The bottoms of the beds are well insulated with a clay layer; therefore in rainy periods the pond system may be staying under water. In 2003 the ponds were dried up completely, but since 2005 the ponds were filled with water.

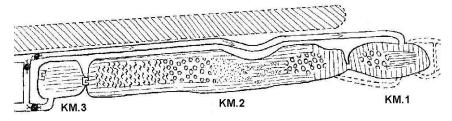


Fig. 1 The sampling area (Kunszentmárton, Hungary)

Field studies

We compiled the species list of the higher plants which can be found in the investigated site. Plant and sediment samples were collected on the end of summer in 2003, 2005 and 2008. A random design was chosen to obtain a representative sample. For sediment collecting, we used Hargrave sediment sampler equipment. The sampling depth was 0-20 cm in the sediment. The samples were also collected from the rhisosphere of plants in 2008. In 2003 and 2008 the type of the area was terrestrial ecosystem, while in 2005 it was aquatic ecosystem.

Laboratory studies

After collecting, the samples were carried to the laboratory of the Department of Applied Ecology (University of Debrecen). We weighed the mass of the different parts of plants. Sediment and plant samples were dried in a drying-oven at 105°C. Then we applied sequential calcinations: at 200°C for 30 min, 250°C for 60 min, then at 300°C for 60 min. again, at 400°C for 30 min, and at the end of the process 500°C for 4 hour. We extracted the metals from ash with cc. HNO₃. The elemental composition of the soil and the plant samples was determined by inductively coupled argon plasma emission spectrometry. The samples were prepared after the regulation of the Hungarian National Standard regarding to the F2 biological analyzing toxicology Dried and ground soil examination prescription. sediment sample were mixed with distilled water in a 1:10 ratio on a GFL 3015 shaking-gear one hour long. Then it was left to consolidate and settle. We determined the conducting ability and the pH on a CONSORT C853 appliance, since the complete salt content could influence the outcome of the test. The samples were centrifuged in an IEC CENTRA MP4 set for 5 minutes on 3,000 rpm. Right after, the samples were strained on a filter paper, and the filtrate was used to the test. 3 ml was taken with a pipette from the filtrate mentioned above and then it was poured on a filtrate paper put in a Petri dish. The test was adjusted with 30 and 25 *Sinapys alba* seed.

RESULTS AND DISCUSSIONS

We measured the pH and conductivity values of the sediment samples, and it can be stated, that those did not report critical effect from the point of view of the plants physiological demand (Table 1).

We collected the sediment samples from 20-30 cm depth and from the rhisosphere of the different plants species. By alkaline pH the heavy metal ions can easily adsorb to the small fragments of soil, but the plants decreased the pH of rhisosphere trough the produce of organic acids (Table 2). The pH values of the sediment from the rhisosphere of *Atriplex hastata* and *Lactuca serriola* were decreased under pH 8. The conductivity values of the soil were between 492-1726 μ S. The sediment of the middle basin of the pond-system had to the highest conductivity values.

The total concentration of Cr measured in the sedimentation pond system of the leather factory far exceeds the concentrations in the control area, since the application of this element in the technology of leather making is of great importance. The heavy metal concentration of the samples can be seen on Figure 3.

Table 1

	The conductivity and pH values of the sediment samples in 2008									
Number of sediment samples	Samples	Conductivity (µS)	рH							
i.	KM.1 sediment	550	8,01							
П.	KM.1 sediment from the rhisosphere of <i>Erigeron canadensis</i>	494	7,8							
III.	KM.2 sediment from the rhisosphere of Atriplex hastata	1220	7,1							
IV.	KM.2 sediment from the rhisosphere of Lactuca serriola	1726	7,1							
٧.	KM.3 sediment from bottom layer	640	8,28							
VI.	KM.3 sediment of surface layer	591	8,27							
VII.	KM.3 sediment from the rhisosphere of Atriplex hastata	492	7.5							

and the finite and all the base of the section and second as in 2000

Table 2

Concentration of the aluminium and heavy metals in the sediment samples

	Samulaa	mg*kg-1								
	Samples	AI	Fe	Mn	Cu	Cr	Pb			
	1. sediment	10495	17081	257	9	21	*			
2003	2. sediment	24165	34668	942	118	15609	3			
	3. sediment	8766	21765	339	12	48	*			
2005	2. sediment	20044	32601	645	28	319	37			
2005	3. sediment	27439	35464	572	26	326	*			

The emission of chromium containing industrial wastewater was finished in 1988. Since then stopped the supply of the heavy metals. In comparison with previous studies it can be stated, that the concentration of heavy metals is decreasing continuously, but it is recently still high. The vegetation of the area accumulated and stabilized the heavy metals for many years, and this process yield the heterogeneity of the sediment, too.

We measured high concentration values in the case of Fe, Cr and Mn in the samples. The Cr concentration in the sediment samples was between 21-15.000 mg kg⁻¹. The maximum value was 15000 mg kg⁻¹ and measured in the sampling site 2^{nd} (KM.2.). Previous studies showed that the concentration of chromium can exceed the 10 000 mg kg⁻¹ value (Simon et al., 2000,

Lakatos et al., 2008). 10594 mg kg⁻¹ concentration of chromium was measured in the soil of a leather tannery district in Italy (Bini et al., 2007), and these also verify that the chromium concentration of such soils may reach so high values. In the concentration of Cu and Pb the concentration values were low in the sediment samples (in the case of Pb the concentration were below the detection limit in the 1, 3 and the 2 samples of sediment). In contrarily we measured high Pb and Cu concentration values in the plant samples. This points to the fact that the accumulation capacity of plants decreased the metal concentration of the surrounding sediment. We proved that the examined site is polluted strongly with heavy metals therefore this site is ideal for study and application of phytoremediation processes and methods.

Table 3

Results of seed	dermination and ro	ots elongation test in 2008
incounts of secur	germination and ro	old clongation test in 2000

			30 seeds	25 seeds	
		%	toxicological categories	%	Toxicological categories
	Ι.	94,8	non-toxic	212,9	Stimulate
	II.	124,2	stimulate	119,2	Stimulate
Samples	III.	100,8	non-toxic	132,3	Stimulate
-	IV.	84,1	slightly-toxic	171,9	Stimulate
	V.	91,6	non-toxic	101,2	non-toxic
	VI.	76,1	slightly-toxic	147,1	Stimulate
	VII.	71,5	slightly-toxic	76,5	slightly-toxic

The results of seed germination and roots elongation test in 2008 are included in Table 3. In the first test 30 while in the second test 25 *Sinapis alba* seeds were placed in a petry-dish. The roots of the seedlings were longer (22mm) than in the first case. It can be explained by the lower number of seeds. From

the sediment samples 3 were slightly-toxic, 3 were non-toxic and 1 was stimulative. In the second test 5 were stimulative, 1 was non-toxic and 1 was slightly-toxic. The sediment samples from the 3^{rd} part of pond system had not toxic effects, but the soil from the *Atriplex hastatas* rhizosphere show slight-toxicity

Csatári I., Keresztúri P., Tóth A., Czudar A., Lakatos Gy.

according to both of the tests. In our opinion, it can be explained with allelopatic interactions. Numerous plant species use this method in competition for different nutrient sources. It is possible, that the heavy metal stress induces, or increases the allelochemical production of plants. Our ecotoxicological study was compared with the results of previous studies (Lakatos et al 1999, Keresztúri 2004). It can be ascertained, that the sediment of sampling area does not show toxicological effects and danger. It may be concluded that the toxic Cr(VI) form is reduced to moderately- or non-toxic Cr(III) form.

Vegetation studies

We found some plant species with extreme (ranges between 3000-4000 mg kg⁻¹) chromium accumulation capacity. For example in the case of *Aster punctatus* the Cr concentration in the stem was 9750 mg kg⁻¹ in 2003. The Mn concentration values in the examined plant samples exceeded the limit of toxic level. We measured extremely high Mn values in the leaves of *Phragmites australis* (7599 mg kg⁻¹). On the basis of average concentration values measured in different plant organs the *Epilobium parviflorum*, the *Solanum*

dulcamara, the Aster punctatus, the Lactuca serriola, the Typha angustifolia and the Phragmites australis seemed to be the best Mn accumulator species. The concentration values of Cu were below the limit of phytotoxic level (150-400 mg kg⁻¹) in the sediment samples of examined site, but in the most cases of examined plant samples we measured Cu concentration values over the toxic 20-30 mg kg⁻¹ level. On the basis of average concentration values measured in different plant organs the best Cu accumulator in 2003 seemed to be the Phragmites australis, Erigeron canadensis and the Aster punctatus. On the basis of average concentration values the Bidens tripartitus, Phragmites australis, Sparganium erectum, Typha angustifolia, and the Xanthium strumarium can be characterised with good Cu accumulation capacity in 2005. In contrarily the Populus alba excluded the surplus Cu.

The Pb concentration values were considerably low in the sediment samples of the examined site. Contrarily the values of Pb in the plant organs in many cases greatly exceeded the limit of phytotoxic levels (30-300 mg). The accumulated Pb values were higher in 2005 than in 2003 (Table 4).

Table 4

	mg kg ⁻¹								
		2003				2005			
Plants	Fraction	Mn	Cu	Cr	Pb	Mn	Cu	Cr	Pb
	root	2803	275	1915	1621				
Aster punctatus /Asteraceae/	stem	3104	256	9750	500				
	leaf	2909	47	2367	813				
	root	967	126	15016	438	643	36	2016	3297
Atriplex hastata /Chenopodiaceae/	stem	560	45	628	498	96	93	293	186
	leaf	1825	11	223	117	743	123	1556	744
	root					924	129	606	931
Bidens tripartitus /Cyperaceae/	stem					371	273	1656	382
	leaf					899	2440	388	2194
	root	1141	133	2072	567	1203	16	166	*
Cirsium arvense /Asteraceae/	stem	656	*	86	386	114	61	*	193
	leaf	297	68	745	152	257	62	*	575
-	root	2677	142	1644	336				
Epilobium parviflorum /Onagraceae/	stem	4055	*	902	263				
/Onagraceae/	leaf	4011	*	142	*				
	root	844	251	600	40				
Erigeron canadensis /Asteraceae/	stem	1549	213	1031	144				
	leaf	3378	214	770	183				
	root	1815	91	1294	136				
Lactuca serriola /Asteraceae/	stem	2367	6	300	180				
	leaf	3940	23	481	372				
	root	267	272	321	321				
Lycopus europaeus /Lamiaceae/	stem	548	68	335	335				
· ·	leaf	568	82	*	*				

Concentration of heavy metals in different parts of plant species

Ecotoxicological investigation and analysis of vegetation of heavy metal contaminated area at Kunszentmárton

root	1092	537	3564	573	17901	908	4027	340
stem	2579	37	1861	620	747	685	50	1557
leaf	7599	127	3024	613	1965	335	1140	568
root	1840	51	807	278				
stem	2416	*	1734	1070				
leaf	2203	29	578	100				
root	2265	160	1975	181				
stem	2847	*	*	*				
leaf	4037	215	712	369				
rhizome					2338	391	2235	464
root					1503	113	1633	678
sprout					2750	238	1675	447
	stem leaf root stem leaf root stem leaf rhizome root	stem 2579 leaf 7599 root 1840 stem 2416 leaf 2203 root 2265 stem 2847 leaf 4037 rhizome root	stem 2579 37 leaf 7599 127 root 1840 51 stem 2416 * leaf 2203 29 root 2847 * leaf 4037 215 rhizome root 51	stem 2579 37 1861 leaf 7599 127 3024 root 1840 51 807 stem 2416 * 1734 leaf 2203 29 578 root 2265 160 1975 stem 2847 * * leaf 4037 215 712 rhizome root	stem 2579 37 1861 620 leaf 7599 127 3024 613 root 1840 51 807 278 stem 2416 * 1734 1070 leaf 2203 29 578 100 root 2265 160 1975 181 stem 2847 * * * leaf 4037 215 712 369 rhizome root 547 547 569	stem 2579 37 1861 620 747 leaf 7599 127 3024 613 1965 root 1840 51 807 278 1861 1070 stem 2416 * 1734 1070 181 1070 leaf 2203 29 578 100 1070 181 1070 root 2265 160 1975 181 1070 181 1070 181 1070 181 1070	stem 2579 37 1861 620 747 685 leaf 7599 127 3024 613 1965 335 root 1840 51 807 278 stem 2416 * 1734 1070 leaf 2203 29 578 100 root 2265 160 1975 181 stem 2847 * * * 2338 391 rhizome 2338 391 1503 113 113	stem 2579 37 1861 620 747 685 50 leaf 7599 127 3024 613 1965 335 1140 root 1840 51 807 278 140 stem 2416 * 1734 1070 leaf 2203 29 578 100

List of plant families on the sampling area

Table 5

	1998	2001	2003	2004	2005	2006	2007	2008
Family	42 species	46 species	19 species	23 species 21	species	18 species	17 species	27 species
Alismataceae		1		1		1		
Amaranthaceae	1	1						
Apiaceae	3	1						
Asteraceae	11	13	7	3	3	3	5	9
Brassicaceae	2							
Butomaceae						1		
Capriofoliaceae	1							
Caryophyllaceae	1				2			
Ceratophyllaceae				1		2		
Chenopodiaceae	1	3	1	1		1	2	2
Convolvulaceae	1	2		1	1	1		
Cucurbitaceae					1	1		1
Cyperaceae	1	1		1	1	1	1	
Dipsacaceae				1				
Fabaceae				1	1		1	1
Iridaceae			1					
Lamiaceae	2	3	1	2	1	1	1	4
Lemnaceae		-		2	2	1		
Lythraceae		1		1	1		1	
Malvaceae	1	1						
Oleaceae	·	•		1				1
Onagraceae	1	2	1	-				1
Poaceae	6	5	3	3	3	2	2	2
Polygonaceae	3	4	2	Ũ	Ū	-	3	2
Ranunculaceae	1	2	-				U U	-
Rubiaceae	1	-						
Salicaceae	·	1	1		1			
Salviniaceae		•	•	1	1	1		
Scrophulariaceae	1			·		•		
Solanaceae	2	2	1					1
Sparganiaceae	£	£	•		1	1		•
Typhaceae	2	2		2	1	1	1	1
Urticaceae	2	2	1	<u>د</u> 1	1	1		1

Most of the identified plants belonged to the families Asteraceae and Poaceae (Table 5). The dominant plants were: Atriplex hastata, Bidens tripartitus, Bolboschoenus maritimus, Cirsium arvense, Erigeron canadensis, Phragmites australis and Typha angustifolia. Besides these dominant species mostly weeds with great water-demand were present. Plants of fresh soils and plants of frequently flooded soils were present in highest numbers in the area. We ascertained that the succession process was directed to the highest degree by the inundation.

CONCLUSIONS

Results of our examination proved that the vegetation of metal contaminated areas could accumulate heavy metals in great amount without

Csatári I., Keresztúri P., Tóth A., Czudar A., Lakatos Gy.

showing any unambiguous syndrome of metal toxicity. We observed that the plants of wetlands could be characterized with more intensive heavy metal accumulation capacity. The distribution of accumulated metals between the different plant organs is greatly affected by the species-specific character of the given plant species and the environmental parameters. The accumulated metals could be enter in the food-chain easily by the biomagnification process. These plants accumulator can be applied for phytoremediation of metal polluted sites. Based on our studies, it can be stated, that this area has diverse vegetation, high heavy metal content and low toxicity. We ascertained that the succession process was directed to the highest degree by the phytoremediation.

REFERENCES

- Barceló J, Poschenrieder C, Chromium in plants. In: Canali S, Tittarelli F, Sequi (eds.), Chromium Environmental Issues. FrancoAngeli, Milano, pp. 103-129, 1997.
- Bini C, Maleci L, Romanin A, The chromium issue in soils of the leather tannery district in Italy. Journal of Geochemical Exploration, 96, 194-202, 2008.
- Bíró I, Takács T, Study of heavy metal uptake of Populus nigra in relation to phytoremediation. Cereal Research Communications, 35, 265-268, 2007.
- Bricker TJ, Pichtel J, Brown HJ, Simmons M, Phytoextraction of Pb and Cd from superficial soil: effects of amendments and croppings. Journal of Environmental Science and Health, Part AToxic/Hazardous Substances and Environmental Engineering, 36, 1597–1610, 2001.
- Brooks RR, (ed.) Plants that Hyperaccumulate Heavy Metals. CAB International, Oxon, UK 1998.

- Csatári I, Keresztúri P, Tóth A, Lakatos Gy, Accumulation of heavy metals in different parts of plants species. Trace Elements in the Food Chain,3, 292-296, 2009.
- Gavris G, Petrehele A, Bota S, Tomulescu I, Merca V, Cleaning waste waters with chromates and oxalic acid. Studia Universitatis "Vasile Goldiş", Seria Științele Vieții (Life Sciences Series),18, 349-352, 2008.
- Keresztúri P, Krómtartalmú üledék fitoremediációjának vizsgálata (1998-2001). Doktori (PhD) értekezés, Debreceni Egyetem, 125 pp, 2004.
- Keresztúri P, Csatári I, Serra-Páka Sz, Lakatos Gy, Strategies of heavy metal uptake by different plant functional groups. Cereal Research Communications 36, 1323-1326, 2008.
- Kabata-Pendias A, Pendias H, Trace elements in soils and plants. CRC Press, Boca Raton, FL, 1992.
- Lakatos Gy, Mészáros I, Papp L, Simon L, Kiss M, Veres Sz, Application of phytoremediation process to chromium-contaminated sediment. Proc. 5th Intern. Conf. on the Biogeochem. of Trace Elements Vienna; 910-911, 1999.
- Lakatos Gy, Keresztúri P, Csatári I, Tóth A, Theory of phytoremediation and its Hungarian practice. Cereal Research Communications, 36, 1339-1342, 2008.
- Levine SN, Rudnivk DT, Kelly JR, Morton RD, Buttel LA, Pollution dynamics as influenced by seagrass beds: experiments tributyltin in Thalassia microcosms. Mar. Environ. Res. 30, 297-322, 1990.
- Simon L, Prokisch J, Szegvári I, Study of the phytoextraction of chromium from contaminated soil 9. International Trace Element Symposium, Budapest, 239-255, 2000.