# PHYLOGENETIC RELATIONSHIPS OF CYPRINIDAE (TELEOSTEI: CYPRINIFORMES) INFERRED FROM THE cox1 GENE SEQUENCES

Catalina LUCA<sup>1</sup>, Angelica Andreea DUDU<sup>1</sup>, Adrian LUCA<sup>2</sup>, Anca DINISCHIOTU<sup>1</sup>, Marieta COSTACHE<sup>1\*</sup>
<sup>1</sup>Biology Molecular Center, University of Bucharest, Romania

<sup>2</sup>Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, Romania

\* Correspondence: Costache M., University of Bucharest, Molecular Biology Center, no. 91-95, Spl. Independentei, Bucharest 5, Romania, Tel +40-(21)-3181575; +40-722-683961, email: marietacostache@yahoo.com Received: march 2008; Published: may 2008

**ABSTRACT.** The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. Mitochondrial DNA investigations have been largely used to explore phylogenetic cyprinid relationships. A fragment of (302bp) from the mitochondrial DNA (mtDNA) subunit I citochrome oxidase gene (cox1) of cyprinid species was sequenced and compared in order to study their phylogenetic relationships. The topologies of neighbor-joining, maximum parsimony and maximum likelihood trees based on cox1 sequences allowed us to identify two major lineages in cyprinids: *Cyprininae* and *Leuciscinae*. The *Cyprininae* group is represented by *Carassius auratus auratus* and forms a separate branch in the trees. The *Leuciscinae* group includs *Rutilus rutilus, Tinca tinca, Hypophthalmichthys molitrix, Arischthys nobilis, Ctenopharyngodon idella, Leuciscus borysthenicus celensis* and *Leuciscus cephalus. Misgurnus fossilis* was used as outgroup species.

#### Keywords: molecular phylogeny, cox1 gene, cyprinid

#### INTRODUCTION

Cyprinids (Cyprinidae) are a major component of Eurasian temperate freshwater fish fauna with respect to the number both of individuals and of species (about 2010 reported species, Nelson, 1994). The role of this family within freshwater ecosystems is therefore central. They have considerable morphological variability, which is likely related to their highly diversified habitat. The relationship between this variability and the phylogeny of the group is an open, interesting question, relevant for the study of evolutionary rates of adaptative traits and for discriminating between convergences and shared traits due to common ancestry, i.e., true homologies. Several molecular phylogenetic studies have already used this family to define phylogenetic links (Briolav et al., 1998; Gilles et al., 1998) and for biogeographical inferences (Brito et al., 1997; Zardoya and Doadrio,1998, 1999; Durand *et* al., 2002; Tsigenopoulos and Berrebi, 2000).

Mitochondrial DNA (mtDNA) has proved useful in molecular phylogenetic studies because evolutionary relationships can be inferred among higher levels, between recently divergent groups, populations, species and even individuals (Avise, 1994). Such data are helpful because molecular characters are less likely related to adaptative evolution than are morphologic characters. The mitochondrial 12S rRNA and 16S rRNA genes were analyzed for North American cyprinids (Simos and Mayeden, 1998, 1999). Phylogenetic relationships of the Cyprinidae in East Asia were inferred from the mitochondrial cytochrome b by He et al., (2001, 2004). Phylogeny of the lower level cyprinids in East Asia was reconstructed by Wang et al. (2002, 2004) based on cytochrome b and 1st intron of the *S7* ribosome protein gene. These studies bring new insight into the evolution and history of this family, but the systematic status of these species and genera with their phylogenetic links are still unclear.

The aim of this study was to identify the phylogenetic relationships of nine Romanian cyprinid species using the genetic variability of the cox1 gene already used in our previous phylogenetic studies (Luca et al., 2005a, 2005b) and also to check out whether similarity exists between the topology tree obtained by us and those obtained by others (Zardoya and Doadrio, 1998, 1999). Ten species were included in this study: *Carassius auratus auratus, Rutilus rutilus, Barbus meridionalis, Tinca tinca, Hypophthalmichthys molitrix, Arischthys nobilis, Ctenopharyngodon idella, Leuciscus borysthenicus celensis, Leuciscus cephalus and a cobitid species (<i>Misgurnus fossilis*) as an outgroup one.

#### MATERIALS AND METHODS Sample Collection

The Nucet Fishery Research Centre provided the fish species required for analysis: *Carassius auratus auratus, Rutilus rutilus, Barbus meridionalis, Tinca tinca, Hypophthalmichthys molitrix, Arischthys nobilis, Ctenopharyngodon idella, Leuciscus borysthenicus celensis, Leuciscus cephalus, Misgurnus fossilis.* 

# Studia Universitatis

Total genomic DNA was extracted with Wizard Genomic DNA Purification Kit (from Promega) according to the manufacturer's instructions (tissue protocol).

#### mtDNA Amplification and Sequencing

Conditions of amplification for the polymerase chain reaction (PCR) used in this study, as well as the sequencing protocol, were described in our previous studies (Luca et al., 2005c). A primer set COX1-F (5'-AGC CTT TGT GCA TTG ATT CCC-3') and COX1-R (5'AGA GCA AAT CGC CGC TTC CGA-3') was used to amplify a fragment of 302pb from cox1 mitochondrial gene and to sequence. Double-stranded PCR products were purified with Wizard PCR Preps DNA Purification System (Promega). Fluorescently labeled dideoxy terminators were used for single-strand DNA sequencing reactions according to the manufacturer's recommendations (ABI PRISM ® BigDye <sup>TM</sup> Terminator Cycle Sequencing Ready Reaction Kit, Applied Biosystems). Labeled extension products were gel separated and analyzed with an automated DNA sequencer (ABI PRISM 3130, Applied Biosystems).

#### **Statistical Analyses**

Sequences were aligned using the CLUSTAL X multiple alignement program and refined manually. Genetic variability (empirical frequencies, transversion (Tv), transition (Ts) and parsimonious rates for all sites) was assessed with the PAUP v4.0 beta 10 program (Swofford, 1998). Relationships between species were determined through the distance method, parsimony method (MP) and the likelihood method (ML). Distance trees were constructed according to the neighbor-joining (NJ) method of Saitou and Nei (1987) with models that take into account the branchswapping algorithm: tree-bisection-reconnection (TBR, Felsenstein, J. 2004) and Hasegawa-Kishino-Yano the 85 parameter model (HKY85). The parsimonious tree (Fitch, 1971) was constructed with the same branchswapping algorithm: tree-bisection-reconnection (TBR.). The tree corresponding to maximum likelihood method was built by setting the HKY+ $\Gamma$  model (Hasegawa, Kishino, and Yano's model with a gamma distribution of substitution rate among different

nucleotide sites). This model was used to determine the number of substitution types. The bootstrap resampling technique (1000 replicates) was used to assess the statistical significance of internal nodes (Felstein, 1985). *Misgurnus fossilis*, an outgroup species from the Cobitidae family close to the Cyprinidae one was used as a root of the phylogeny tree.

#### **RESULTS AND DISCUSSIONS**

The PCR reactions have led to the amplification of a 302bp ADN fragment from cox1 gene of all cyprinids species included in the study (Carassius auratus auratus, Rutilus rutilus, Barbus meridionalis, Tinca tinca, Hypophthalmichthys molitrix, Arischthys nobilis, Ctenopharyngodon idella, Leuciscus borysthenicus celensis, Leuciscus cephalus, Misgurnus fossilis). The lenghts of the fragments have been checked by agarose gel electrophoresis. The obtained sequences were compared with nucleotide retrieved from GenBank (Table 1). The resulted identity was greater than 85%, denoting a phylogenetic relationship between the analyzed species. The *Tinca tinca* sequence was introduced in the GenBank (www.ncbi.nlm.nih.gov.url/ GenBank) and received the accession number EF112527.

The sequences were aligned with the Clustal X program (see Figure 1) and the results were used to build the phylogenetic trees through three different methods: neighbor-joining method, parsimony method and likelihood method. A total of 284 characters were analyzed, of which 183 were constant, 43 were variable (parsimony-uninformative) and 58 were parsimony-informative. The combined dataset resulted in the best likelihood score

(-lnL=1192.63391) for the HKY+ $\Gamma$  model. The estimated nucleotide empirical frequencies were: A=0.27477, C=0.26193, G=0.16647 and T=0.29683. An overall Ts/Tv ratio of 4.46 was estimated for this dataset. Base composition was calculated across all taxa for 1<sup>st</sup>, 2<sup>nd</sup>, and 3<sup>rd</sup> codon positions and all codon positions combined.

The divergence between each two species was estimated based on the HKY85 test. Pairwise sequence divergence between taxa varied from 5 to 30% (Table 2).

Table 1

### THE COMPARISON BETWEEN COX1 SEQUENCE OBTAINED BY US AND GENBANK SEQUENCES

| Species                     | Identities (%) | Database species and accession number |  |  |  |
|-----------------------------|----------------|---------------------------------------|--|--|--|
| Arischthys nobilis          | 99             | Hypophthalmichthys nobilis/           |  |  |  |
|                             |                | EU343733                              |  |  |  |
| Ctenopharyngodon idella     | 98             | Ctenopharyngodon idella/              |  |  |  |
|                             |                | EU391390                              |  |  |  |
| Hypophthalmichthys molitrix | 98             | Hypophthalmichthys molitrix/          |  |  |  |
|                             |                | EU315941                              |  |  |  |
| Rutilus rutilus             | 85             | Tinca tinca/                          |  |  |  |
|                             |                | EF112527                              |  |  |  |
| Barbus meridionalis         | 91             | Gobio gobio/                          |  |  |  |
|                             |                | AB239596                              |  |  |  |
| Tinca tinca                 | 100            | Tinca tinca/                          |  |  |  |
|                             |                | EF112527                              |  |  |  |
| Misgurnus fossilis          | 86             | Misgurnus nikolskyi/                  |  |  |  |
| -                           |                | AB242171                              |  |  |  |
| Carassius auratus auratus   | 97             | Carassius auratus auratus/            |  |  |  |
|                             |                | AB111951                              |  |  |  |

| SU                               |    | Studia Universitatis     |
|----------------------------------|----|--------------------------|
| Leuciscus borysthenicus celensis | 88 | Tinca tinca/             |
| Leuciscus cephalus               | 90 | EF112527<br>Tinca tinca/ |
|                                  |    | EF112527                 |

| L                                              | EVELS OF NUCLEOT                                                                                                                                                                                                    |                                                                                    |                                                                      |                                                                                                                                 | AND BET                                                                                                                                    | WEEN 9                                                                                                                                                   |                                                                                                                                  | SPECIE                                                                                                                                                                             | S, TOGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            | ſΗ |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                | THUSE FOR T                                                                                                                                                                                                         | 1                                                                                  | 2                                                                    | <u>n. FUSSIL</u><br>3                                                                                                           | <u>3. THE E</u><br>4                                                                                                                       | 5                                                                                                                                                        | <u>5 WERE</u><br>6                                                                                                               | 7                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                          | 10 |
| 1<br>2<br>4<br>5<br>6<br>7<br>8<br>9<br>10     | M. fossilis<br>A. nobilis<br>H. Molitrix<br>C. idella<br>B. meridionalis<br>L. boryst. celensis<br>L. cephalus<br>T. tinca<br>R. rutilus<br>C. auratus auratus                                                      | -<br>0.250<br>0.250<br>0.248<br>0.309<br>0.293<br>0.288<br>0.253<br>0.263<br>0.214 | 0.060<br>0.106<br>0.171<br>0.180<br>0.174<br>0.150<br>0.160<br>0.191 | 0.082<br>0.180<br>0.172<br>0.176<br>0.149<br>0.193<br>0.227                                                                     | 0.169<br>0.185<br>0.145<br>0.145<br>0.166<br>0.194                                                                                         | 0.189<br>0.195<br>0.172<br>0.194<br>0.193                                                                                                                | 0.052<br>0.118<br>0.143<br>0.194                                                                                                 | 0.110<br>0.120<br>0.170                                                                                                                                                            | 0.175<br>0.173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.177                                                                                                                                                                                                      | -  |
| A<br>C<br>H<br>M<br>C<br>L<br>L<br>T<br>R<br>B | trischthys_nobilis<br>tenopharyngodon_ide<br>lypophthalmichthys_m<br>isgurnus_fossilis<br>arassius_auratus_au<br>euciscus_borystheni<br>euciscus_cephalus<br>inca_tinca<br>tutilus_rutilus<br>arbus_meridionalis    | lla<br>olitrix<br>ratus<br>cus_cele                                                | ns                                                                   | -AGCCTTT<br>TAGCCTTT<br>-AGCCTT<br>-TAGCCTT<br>-TAGCCTT                                                                         | GTGC-ATT<br>GTGCCATT<br>TGTGCATT<br>TGTGCATT                                                                                               | GATTCCCC<br>GATTCCCC<br>GATTCCCA<br>GATTCCCC                                                                                                             | CTCTTGAA<br>-TTGTGGT<br>-TTCTTTT<br>CTATTTAC<br>CTACTAAC<br>CTACTACTAAC<br>CTCTCTCT                                              | AC GANTA<br>TCCCGGTTTA<br>TCCCGGTATA<br>CGGGGTATA<br>CAGGGTACA<br>CAGGATACA<br>CAGGATACA<br>CAGGATACA                                                                              | АСТТТАААС<br>АСТТТАААС<br>АСТТТАСАС<br>АСТСТССАТ<br>АСТСТССАТ<br>АСССТАААТ<br>АСССТАААТ<br>АСССТАААС<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CGA 24<br>CGA 25<br>CGA 25<br>CAG 48<br>AG 50<br>CGA 48<br>CGA 19<br>CGA 49<br>CGA 9                                                                                                                       |    |
| A<br>C<br>H<br>M<br>C<br>L<br>L<br>T<br>R<br>B | rischthys_nobilis<br>tenopharyngodon_ide<br>ypophthalmichthys_m<br>isgurnus_fossilis<br>arassius_auratus_au<br>euciscus_borystheni<br>euciscus_cephalus<br>inca_tinca<br>utilus_rutilus<br>arbus_meridionalis       | lla<br>olitrix<br>ratus<br>cus_celen                                               | ns                                                                   | CACCTGAA<br>CACCTGAA<br>CACCTGAA<br>CACTTGAC<br>CGCTTGAA<br>TACTTGAA<br>TACTTGAA<br>TACTTGAA<br>TGATACTT                        | CAAAAATC<br>CAAAAATC<br>CAAAAATC<br>CAAAAATC<br>CAAAAATC<br>CAAAAATC<br>CAAAAATC<br>CAAAAATC<br>CAAAAATC<br>CAAAAATC<br>GGGGAGTT<br>*      | CC-CTTCGG<br>CC-CTTTGG<br>CCACTTCGG<br>CCACTTTGG<br>CCACTTTGG<br>CCACTTCGG<br>CCACTTCGG<br>CCACTTCGG<br>CCACTTCGG<br>CCACTCGG<br>CCACTCGG<br>CCACTCGG    | GGTAATAT<br>GAGTAATGT<br>GGTAATGT<br>GGTAATGT<br>GGTTATAT<br>GATCATAT<br>GAGTTATAT<br>GAGTTATGT<br>GAGTTATAT                     | TCATCGGC<br>TCATCGGT<br>TCATCGGG<br>TCATCGGG<br>TCATCGGA<br>TCATTGGT<br>TCATTGGT<br>TCATTGGC<br>TTATTCGC<br>CGA                                                                    | CGTAAA-TC<br>CGTAAA-CC<br>CGTAAA-TC<br>GGTTAAA-TC<br>GGTTAAA-CC<br>CGTAAA-CC<br>CGTAAA-CC<br>CGTAAA-CC<br>CGTAAA-CC<br>CGTAAA-CC<br>CGTGAA-TC<br>AGGTGA-TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TTT       72         CTC       73         TTT       74         CTC       94         CTC       100         CTT       95         CTT       68         CTC       98         CTC       58         NGA       26 |    |
| A<br>C<br>H<br>M<br>C<br>L<br>L<br>T<br>R<br>B | rischthys_nobilis<br>tenopharyngodon_ide<br>ypophthalmichthys_m<br>isgurnus_fossilis<br>arassius_auratus_au<br>euciscus_borystheni<br>euciscus_cephalus<br>inca_tinca<br>utilus_rutilus<br>arbus_meridionalis       | lla<br>olitrix<br>ratus<br>cus_cele                                                | ns                                                                   | ACATTCTT<br>ACATTCTT<br>ACATTCTT<br>ACATTCTT<br>ACATTCTT<br>ACATTCTT<br>ACATTCTT<br>ACATTCTT<br>ACATTCTT<br>AGATTCTT<br>* ** ** | CCCACAAC<br>CCCGCAAAC<br>CCCACAAAC<br>CCCACAAAC<br>CCCACAAAC<br>CCCACAAAC<br>CCCACAAAC<br>CCCACAAAC<br>CCCACAAAC<br>CCCACAAAC<br>CCCACAAAC | CACTTCCTA<br>CACTTCCTA<br>CACTTCCTA<br>CACTTCCTC<br>CACTTCCTC<br>CACTTCCTG<br>CATTTCCTA<br>CATTTCCTA<br>CATTTCCTA<br>CATTTCCTA<br>CATTTCCTA              | GGTCTA-C<br>GGCCTA-C<br>GGCCTA-C<br>GGCCTA-C<br>GGCTT-C<br>GGCTT-C<br>GGATTG-C<br>GGATTA-C<br>GGCTA-C<br>GGC-TA-C<br>** *        | GCAGGAAT(<br>GCAGGAAT(<br>GCAGGAAT(<br>GCGGGCAT(<br>GCAGGAAT/<br>GCAGGAAT/<br>GCAGGAAT/<br>GCAGGAAT/<br>GCAGGAAT/<br>CGAGGAAT/<br>CGAGGAAT/<br>CGAGGAAT/<br>CGAGGAAT/<br>CGAGGAAT/ | GCCACGACG<br>GCCACGACG<br>GCCACGACG<br>GCCACGACG<br>GCCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACGACG<br>ACCACGACGACG<br>ACCACGACGACG<br>ACCACGACGACG<br>ACCACGACGACG<br>ACCACGACGACG<br>ACCACGACGACG<br>ACCACGACGACG<br>ACCACGACGACG<br>ACCACGACGACG<br>ACCACGACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACG<br>ACCACGACGACGACGACG<br>ACCACGACGACGACGACGACGACGACGACGACGACGACGA | GAT 121<br>GAT 122<br>GAT 123<br>GGT 143<br>GGT 143<br>GGT 150<br>GAT 150<br>GAT 144<br>GAT 147<br>GAT 107<br>GAC 73                                                                                       |    |
| A<br>C<br>H<br>M<br>C<br>L<br>L<br>T<br>R<br>B | rischthys_nobilis<br>tenopharyngodon_ide<br>ypophthalmichthys_m<br>isgurnus_fossilis<br>arassius_auratus_au<br>euciscus_borystheni<br>euciscus_cephalus<br>inca_tinca<br>utilus_rutilus<br>arbus_meridionalis       | lla<br>olitrix<br>ratus<br>cus_cele                                                | ns                                                                   | ACT<br>ACT<br>ACT<br>ATT<br>ATT<br>ATT<br>ACT<br>AGATACAT<br>*                                                                  | CTGACTAC<br>CCGACTAT<br>CCGACTAC<br>CAGATTAC<br>CTGATTAT<br>CTGACTAC<br>CTGACTAC<br>CTGACTAC<br>CTGACTAC<br>CTGACTAC<br>CTGACTAC           | CCCAGATGC<br>CCCGGACGC<br>CCCAGATGC<br>CCCAGATGC<br>CCCAGACGC<br>CCCAGACGC<br>CCCAGACGC<br>CCCAGACGC<br>CCCAGACGC<br>CCCAGACGC<br>CCCCGACGC<br>CCCCGACGC | CTACGCCC<br>CTACGCCC<br>CTACGCCC<br>CTATACAC<br>CTATACCC<br>CTATGCCC<br>CTATGCCC<br>CTATGCCC<br>CTATGCCC<br>CTATGCCC<br>CTACGCCC | CTGTGAAAT<br>CTATGAAAT<br>CTGTGAAAT<br>CTATGAAAT<br>CTGTGAAAT<br>CTGTGAAAT<br>CTATGAAAT<br>CTATGAAAT<br>CTATGAAAT<br>CTATGAAAT                                                     | ACAGTATC<br>ACAGTATC<br>ACAGTATC<br>CACAGTATC<br>CACAGTATC<br>ACAGTATC<br>ACAGTATC<br>ACAGTATC<br>ACAGTATC<br>ACAGTATC<br>ACAGTATC<br>ACAGTGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CAT 166<br>CAT 167<br>CAT 168<br>CAT 188<br>CAT 188<br>CAT 195<br>CAT 189<br>CAT 162<br>CCT 192<br>CGT 152<br>CAT 123                                                                                      |    |
| A C<br>H<br>M<br>C<br>L<br>L<br>T<br>R<br>B    | rischthys_nobilis<br>tenopharyngodon_ide<br>lypophthalmichthys_m<br>lisgurnus_fossilis<br>carassius_auratus_au<br>euciscus_borystheni<br>euci scus_cephalus<br>inca_tinca<br>cutilus_rutilus<br>carbus_meridionalis | lla<br>olitrix<br>ratus<br>cus_cele                                                | ns                                                                   | CTATCGGA<br>CTATCGGA<br>CTATCGGA<br>CTATCGGA<br>CTATCGGG<br>CTATCGGG<br>CTATTGGG<br>CTATTGGG<br>CTATTGGG<br>CCATTGGA            | TCTCTTAT<br>TCACTTAT<br>TCTCTTAT<br>TCTATAAT<br>TCCCTAAT<br>TCCCTAAT<br>TCACTCAT<br>TCGCTAAT<br>TCGCTAAT<br>TCACTCAT                       | TTCCCTGG<br>CTCCTAG<br>CTCCTAG<br>CTCATAG<br>CTCCTAG<br>CTCCTAG<br>CTCCTAG<br>TTCCCTAG<br>CTCCTAG<br>CTCCTAG                                             | TAGCAGTA<br>TAGCAGTA<br>TAGCAGTA<br>TGGCTGTA<br>TAGCGGTA<br>TAGCGGTA<br>TAGCAGTA<br>TAGCAGTA<br>TGGCAGTA<br>TGGCAGTA             | AATTATGTI<br>AATTATATATI<br>AATTATATGTI<br>AATTATGTI<br>AATTATGTI<br>AATCATATI<br>AATTATATATATATATI<br>AATTATATATI                                                                 | CCTATTTA<br>CCTATTTA<br>CCTATTTA<br>CCTATTTA<br>CCTATTTA<br>CCTATTTA<br>CCTATTTA<br>CCTATTTA<br>CCTATTTA<br>CCTATTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATC 216<br>ATC 217<br>ATT 218<br>ATT 238<br>ATT 245<br>ATT 245<br>ATT 239<br>ATT 212<br>ATC 242<br>ATC 242<br>ATC 202<br>ATT 173                                                                           |    |

CTATGAGAAGCCTTCGCCGCTAAAACGAGAA 247 CTATGAGAAGCCTTCGCCGCTAAAACGAGAA 248 CTATGAGAAGCCTTCGCCGCTAAA-CGAGAA 248

Arischthys\_nobilis Ctenopharyngodon\_idella Hypophthalmichthys\_molitrix Studia Universitatis "Vasile Goldiş", Seria Ştiințele Vieții (Life Sciences Series), vol. 18, 2008 © 2008 Vasile Goldis University Press http://www.studiauniversitatis.ro

Table 2

Studia Universitatis

Misgurnus\_fossilis Carassius\_auratus\_auratus Leuciscus\_borysthenicus\_celens Leuciscus\_cephalus Tinca\_tinca Rutilus\_rutilus Barbus\_meridionalis



Fig. 1 CLUSTAL X multiple cox1 sequence alignment



All the trees obtained by us presented almost the same topology (Figure 2). The robustness of the tree was corroborated with bootstrap analyses. A gammacorrected ML ( $\alpha$ = 0.24) analysis also yielded a congruent tree. The cyprinid species were grouped into two assemblages: Cyprininae and Leuciscinae. The Cyprininae group is represented by Carassius auratus auratus and forms a separate branch in the trees with a high boostrap value presented in Figure 2C. The Leuciscinae group includs Rutilus rutilus, Tinca tinca, Hypophthalmichthys molitrix, Arischthys nobilis, Ctenopharyngodon idella, Leuciscus borysthenicus celensis, and Leuciscus cephalus. Ctenopharyngodon, Arischthys and Hypophthalmichthys genera (East Asian cyprinid) formed a monophyletic clade with strong support according boostrap value of 91 in the ML tree.

The NJ tree (Figure 2A) was identical to the MP tree (Figure 2B), with the exception of the phylogenetic position of *Rutilus rutilus*. In previous studies (Gilles A. et al., 1998; Zardoya R. and Doadrio I., 1998; Xuzhen Wang et al., 2007.) it was demonstrated that this species had close phylogenetic relationships with the *Leuciscus* group which is in accordance with the results of our NJ tree. The NJ and MP trees from figures 2A and 2B placed *Barbus meridionalis* as paraphyletic group to the cyprinin one. For *Misgurnus foossilis* the position of outgroup species in our phylogenetic trees (Figure 2A, 2B, 2C) was confirmed.

## CONCLUSIONS

Our data are mostly in agreement with previous results concerning the phylogenetic relationships of *Cyprinidae* family. High percentage of identity of our sequence (>85%) denotes a close phylogenetic relationship between the analyzed species. The topologies of neighbor-joining, maximum parsimony and maximum likelihood trees based *on cox1* sequences have enabled us to identify two major lineages in cyprinids: *Cyprininae* and *Leuciscinae*. The NJ tree highlighted two monophyletic clades: one for East Asian cyprinids (*Ctenopharyngodon, Arischthys* and *Hypophthalmichthys*) and one for the *Leuciscus* species and *Rutilus* species using *Misgurnus fossilis* as an outgroup species.

# REFERENCES

- Avise J. C., Molecular Markers, Natural History and Evolution, Chapman & Hall, New York. 1994
- Briolay J., Galtier N., Brito R.M., Bouvet Y., Molecular phylogeny of Cyprinidae inferred from cytochrome b DNA sequences, Mol. Phylogenet. Evol., 9 (1),100–108, 1998.
- Brito R.M., Briolay J., Galtier, N., Bouvet Y., Coelho M.M., Phylogenetic relationships within genus Leuciscus (Pisces, Cyprinidae) in Portuguese fresh waters, based on mitochondrial Cytochrome b sequences, Mol. Phylogenet. Evol., 8, 435-442, 1997.
- Durand J.-D., Tsigenopoulos C. S. and P. Berrebi, Phylogeny and Biogeography of the Family Cyprinidae in the Middle East Inferred from Cytochrome b DNA - Evolutionary Significance of This Region, Mol. Phylogenet.Evol., 22 (1), pp. 91–100, 2002.

- Felsenstein J., Inferring Phylogenies. Sinauer Associates, Sunderland, Massachusetts, 2004
- Fitch W. M., Toward defining the course of evolution: minimum change for a specific tree topology, Syst. Zool. 20, 406–416, 1971.
- Gilles A., Lecointre G., Faure E., Chappaz R., Brun G., Mitochondrial phylogeny of the European cyprinids: implications for their systematics, reticulate evolution and colonization time, Mol. Phylogenet.Evol., 10 (1),132 –143, 1998.
- Hasegawa M., H. Kishino and T.Yano, Dating of the human-ape splitting by a molecular clock of mitochondrial DNA, J. Mol. Evol., 22, 160–174, 1985.
- He S, Chen Y, Nakajima T., Sequences of cytochrome b gene for primitive cyprinid fishes in East Asia and their phylogenetic concerning, Chin. Sci. Bull., 46, 661 -665, 2001.
- He S., Liu H. and Chen Y., Molecular phylogenetic relationships of eastern Asian Cyprinidae (Pisces: cyprinidformes) inferred from cytochrome b sequences, Sci China Ser C-Life Sci, 47(2), 130-138, 2004.
- Luca C., Condac E., Dinischiotu A., Ionica E., Tesio C. and Costache M., Molecular phylogenetic relatioships in romanian cyprinids based on cox1 and cox2 sequences, Proceedings of Balkan Scientific Conference of Biology, Plovdiv, Bulgaria (Eds.B. Gruev, M.Nikolova and A. Donev), p. 87-102, 2005a.
- Luca C., Condac E., Ionică E., Crăciun N., Dinischiotu A., Tessio C. and Costache M., Subunitatea cox1 folosita ca marker filogenetic pentru ciprinide din Romania, Analele SNBC, vol. X, p. 568-571, 2005b
- Luca C., Condac E., Dinischiotu A., Ionica E., Tesio C. and Costache M., Molecular markers used in cyprinid fish phylogeny, Lucrări științifice Zootehnie și Biotehnologii, vol. XXXVIII, Timișoara, p. 785- 791, 2005c.
- Nelson, J. S., Fishes of the World, 3rd ed., Wiley, New York, 1994.
- Saitou, N. and M. Nei, The neighbor joining method: a new method for reconstructing phylogenetic trees, Mol.Biol. Evol., 4, 406–425, 1987.
- Simons A. M., Mayden R. L., Phylogenetic relationships of the western North American phoxinins (Actinopterygii:cyprinidae) as inferred from mitochondrial 12S and 16S ribosomal RNA sequences, Mol Phylogenet Evol, 9, 308-329, 1998.
- Simons A. M., Mayden R. L., Phylogenetic relationships of North American cyprinids and assessment of homology of the open posterior myodome, Copeia, 1, 13 -21, 1999.
- Swofford D. L., PAUP\*: phylogenetic analysis using parsimony (and other methods). Sinauer, Sunderland, Mass.,1998.
- Tsigenopoulos S. C. and Berrebi P., Molecular Phylogeny of North Mediterranean Freshwater Barbs (Genus Barbus: Cyprinidae) Inferred from Cytochrome b Sequences: Biogeographic and Systematic Implications, Mol. Phylogenet.Evol., 14 (2), pp. 165–179, 2000.

- Wang X, He S, Chen Y., Sequence variations of the S7 ribosomal protein gene in primitive cyprinid fishes: Implication on phylogenetic analysis, Chin Sci Bull, 47(19), 1638 -1643, 2002.
- Wang X, Liu H, He S., Sequence analysis of cytochrome b gene indicated that East Asian group of cyprinid subfamily Leuciscinae (Teleostei:Cyprinidae) evolved independently, Prog. Natl. Sci., 14(2), 132 -137, 2004.
- Xuzhen Wang, Junbing Li, Shunping He, Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei:Cypriniformes) derived from the nuclear recombination activating gene 2 sequences, Mol. Phylogenet.Evol., 42, 157–170, 2007.
- Zardoya R., Doadrio I., Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids, J.Mol.Evol. 49, 227 –237, 1999.
- Zardoya R., Doadrio I., Phylogenetic relationships of Iberian cyprinids: systematic and biogeographical implications, Proc.R.Soc.Lond. B 265, 1365–1372, 1998.